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MULTIMODALITY IMAGE FUSION 
FOR 3-D MODEL BUILDING WITH APPLICATIONS 

Professor Aly A. Farag 

CVIP Laboratory 
University of Louisville, Louisville, KY 40292 

E-mail: farag@cairo.louisville. edu 
Phone: 502-852-7510; Fax: 502-852-1580 

Overall Project Plan 

In this investigation, we propose a methodology for 3-D model building by the fusion of multimodality 
data provided from space-borne and/or air-borne sensors. Figure 1 illustrates a conceptual framework 
for multisensory data fusion for 3-D model building. A 3-D model of a target area can be built using 
different data types, e.g., Landsat MSS data, AVIRIS hyperspectral data, range data, and/or elevation 
(DEM) data. 

Data fusion and integration can be performed either at the data level or at the decision level. 
Multispectral and hyperspectral data sets can be classified locally (e.g., using the fuzzy c-mean 
classifier), then decision fusion are used to fuse the local decision classes, or data fusion techniques 
can be used to fuse the data sets into one data set for classification. Probabilistic and evidential 
methods for data fusion will be investigated in this study. 

Topographic data, from range scanners (ALTM) and/or radar (DTED) can be integrated, after 
registration, with the classification results of the multispectral and hyperspectral data in order to 
produce the final 3-D model of the sensed target area. 
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Figure 1: Block diagram of the proposed classification and data fusion methodology. 
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Efforts Done During the Grant Period 

The following research achievements summarize the efforts done during the grant period. 

o   Efforts during 2001 

■ Data collection 
We created a data-fusion group on the SGI ONYX-II supercomputer at the CVIP Lab. That group has 
access to over 200GB of remote sensing data from various sources. We also installed a one-seat license 
of the ENVI software package to be used for data display and basic image processing tasks. Standard 
statistical and numerical analysis packages are readily available at the CVIP Lab and are being used in 
this project. 

■ Fuzzy classification for hyperspectral data 
We are pursuing the development of the Fuzzy C-Means (M-FCM) algorithm that was introduced in 
2000 [l]-[3]. Our goal is to make the M-FCM unsupervised in terms of the number of classes, and the 
parameters per class. 

■ Fusion of range and stereo data 
Range data generated by a laser scanner at the CVIP Lab (Cyberware 3030RGB) are generated for 
various objects (including human faces). At the same time, calibrated sequence of 2D images is 
generated, for the same objects. Shape extraction methods (e.g., stereo and space carving [4]) are used 
to generate 3D objects, which will be calibrated/integrated using the laser scanned models. Purpose of 
this experiment is to generate some ground truth data to test the basic data fusion and integration 
models to be developed in this research. 

o   Efforts during 2002 

■ Updating the available programs and testing them with new data sets 
We updated the programs that implemented by the lab staff worked in similar projects at the lab. These 
algorithms include the Bayes' classifier, K-Nearest neighbors' classifier, and Fuzzy logic classifier. 
The class conditional probability is implemented using parametric methods "e.g. Gaussian model" and 
parametric methods "e.g. Parzen window" for the Bayes' classifier verification. These algorithms are 
tested using two Lansat data sets, the golden bay area of San Francisco and an agricultural area. The 
classification accuracy of these algorithms is roughly about 92 % for the golden bay area and about 
70% for the agricultural area. Detailed results can be found in [1]. 

■ Statistical, fuzzy logic classifiers and data fusion algorithms 
We implemented some stochastic (statistical) algorithms that depend on modeling the classification 
process as stochastic processes. These models are represented as Gibbs-Markov random fields the 
Iterative Conditional Modes (ICM) algorithm is used for their implementation. These methods enhance 
significantly the classification accuracy of the previously implemented algorithms. For the golden bay 
area, the accuracy reaches 97.5% where it reaches 90% for the agricultural area. Also, a fuzzy logic 
classifier is implemented, [5]. 
A simple data fusion algorithm emerged from the well known Bayes' rule is implemented, [5]. This 
algorithm is applied to fuse the output of two classifier outputs. The results show that the fusing 
algorithm enhances the results, but still more works is required in this direction. 
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■ Feature extraction 
Some effort is done for feature extraction of Landsat data. These features depend mainly on first and 
second order histogram features. But still this effort is under developing and needs some enhancement 
to provide good characterizing and representative features. 

■ Image registration and fusion 
In addition to the tasks scheduled for the period of this report, there was a considerable effort done for 
image registration and fusion. A method for image registration using parallel genetic algorithms is 
proposed and implemented. Some experiments with Landsat data sets are done to test the effectiveness 
of the method. The results show that the method has the ability to register two data sets effectively and 
within considerable proceeding time, [6]. 
A general purpose platform for 3-D model registration and fusion is founded in the lab. The main 
component of this platform is 3-D laser scanner which is available in the lab. With this platform, 3-D 
models can be registered and fused. Up to now, the platform is tested using 3-D generated by 
Computer Vision algorithms, like stereo based and space carving methods, [7]. It is planned to use 
platform in registering and fusion of 3-D models extracted from spectral data sets. 

o   Efforts during 2003 

■ High Dimensional Density Estimation Algorithms 
We designed and implemented a density estimation algorithm appropriate for higher dimensional data 
sets. This algorithm uses the Support Vector Machines (SVM) method for density estimation. The 
algorithm is applied for various data sets, either synthetic or real data, in various dimensions. The 
results showed that the algorithm is suitable and useful for density estimation in higher dimensions. 
The algorithm is used in Bayes setup for the estimation of class probabilities for the various classes in 
multispectral data sets. The proposed algorithm is compared with previously designed algorithms and 
the results showed the superiority of the proposed algorithms over other algorithms. Detailed results 
can be found in [8, 12]. 

■ Statistical Multi-Stages Classifier for Multispectral Data 
We designed and implemented some stochastic algorithms that consist of two stages. The first stage 
uses the SVM to implement the class conditional probabilities in a Bayes classification setup. The 
second stage models the classification process as stochastic processes. These models are represented as 
Gibbs-Markov random fields and the Iterative Conditional Modes (ICM) algorithm is used for their 
implementation. The results show that the two stages setup enhances significantly the classification 
accuracy of the previously implemented algorithms. For the golden bay area, the accuracy reaches 
98.5% where it reaches 90% for the agricultural area. Detailed results can be found in [9, 11]. 

■ Unsupervised Statistical Classification 
It is not the usual case that there are some training samples that can be used to estimate the parameters 
of a classifier. So, we designed and implemented a classification algorithm that works in a complete 
unsupervised setup. The algorithm is unsupervised in terms of the number of classes defined in a data 
set. Also, the algorithm is unsupervised in the sense that it does not need training samples for each 
class. 
The algorithm considers a data set as a mixture of densities and it uses the well-known EM algorithm 
with some modifications. The algorithm estimates the number of classes, the parameters of each class 
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density as long as the proportions of each class in the data set. We applied the algorithms for various 
data sets, either synthetic or real data. The results show that the algorithm performs well and 
comparable to supervised algorithms. Detailed results can be found in [10]. 

o   Efforts during 2004 

■ Mean Field Theory for Density Estimation using Support Vector Machines 
A learning algorithm is developed for learning of SVM as a density estimator. This algorithm depends 
on the Mean Field Theory which compresses the complicated statistical interactions of random 
variables into a simple distribution. The algorithm is used to enhance the performance of the SVM 
density estimation in both time and accuracy consideration. The results [13] on both synthetic and real 
multispectral data illustrate that the proposed algorithm is highly fast with respect to the traditional 
formulation of the SVM density estimator. Also, the results show an enhancement of the performance 
of the density estimation process. The real multispectral data classification is used in the performance 
evaluation as an application for density estimation. 

■ A Unified Framework for MAP Estimation in Remote Sensing Image Segmentation 
This is an ongoing work which aims at setting a framework for applying the MAP segmentation 
principle on remote sensing data [14]. An algorithm is proposed for each part of the MAP principle as 
well as an iterative setup for the whole system. The Mean Field based SVM density estimation is used 
for the class conditional probabilities estimation and MRF is used for the modeling of the high level 
process of the MAP principle. A new algorithm which is simple and fast for the estimation of the MRF 
parameters is proposed. An iterative setup is used to maximize the MAP estimate so that more 
enhanced segmented image can be obtained. 

Interactions 

During the time period considered in this report, the following seminars and talks took place: 

I.   "Remote   Sensing  Data  Analysis  and  Data  Fusion:   Some  Concepts  and  Algorithms 
Overview," 
By: Refaat M Mohamed, CVIP Lab, Wed. March 27-02. 

II.   "Multi-Spectral Data Classification: 'Primary Results'," 
By: Refaat M Mohamed, at the CVIP Lab., Wed April 3-02. 

III. "Experiments in Multimodality Image Classification and Data Fusion," 
By: Refaat M Mohamed, IF'02 Conference, Annapolis, MD, Monday Jul 8-02. 

IV. "A   General-Purpose   Platform   for   3-D   Reconstruction   from   Sequence   of Images," 
By: Refaat M Mohamed, IF'02 Conference, Annapolis, MD, Monday Jul 8-02. 

V.   "Image Registration in Multispectral Data Sets," 
By: Hani Mahdi, at CVIP Lab., Tuesday Jul 30-02. 

VI.   "Developments in Remote Sensing Data Classification and Fusion" 
By: Aly A Farag, at the AFOSR meeting, Washington DC, Monday Aug 12-02. 

VII.   "Recent Results in Bayesian Classification of Multispectral Data," 



CVIPLab, Univ. of Louisville, F49620-01-1-0367 "Multimodality Image Fusion for 3-D Model Building" FINAL REPORT Aly Farag (PI) 

By: Refaat M Mohamed, ASPRS-Midsouth 2002, Murray, Kentucky, Thursday Oct-24, 
2002. 

VIII.   "Application of Support Vector Machines in Density Estimation," 
A poster by: Refaat M Mohamed, ASPRS-Midsouth 2002, Murray, Kentucky, Friday Oct-25, 
2002. 

IX.   "Classification of Multispectral Data Using Support Vector Machines Approach for Density 
Estimation," 
By: Refaat M Mohamed, International Conference on Intelligent Engineering System INES 
2003, Assiut, Egypt, Tuesday March-6, 2003. 

X.   "Unsupervised Density Estimation Using EM Algorithm," 
By: Refaat M Mohamed, at CVIP Lab., Wednesday April-3, 2003. 

XL   "Application of Support Vector Machines in Density Estimation," 
A poster by: Refaat M Mohamed, EPSCoR 2003, May-12, 2003. 

XII.   "Two Sequential Stages Classifier for Multispectral Data," 
By: Refaat M Mohamed, at IEEE conference on Computer Vision and Pattern Recognition 
(CVPR) Workshop on Intelligent Learning 2003, Sunday June-22, 2003. 

XIII.   "Mean Field Theory for Density Estimation using Support Vector Machines," 
By: Aly A Farag, at IF'04 Conference, Stockholm, Sweden, July 29-04. 
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Appendix: Software 

The following listings summarize some of the code used in the development of the research efforts 
discussed before. All the listings are coded in MATLAB 6 or higher. 

■    KNN Classification 
clear all 
format long 
load EvalData %Contanins Test data "Z" and the corresponding desired "D" 
ZTest=Normalize(ZTest); % choose side length 
load TrainData %Contains ProtoTypes "Training Data" and ProtoDisered "Training Data Desire" 
Z=Normalize(Z); 

fori=l:length(DTest) 
i 
Distances=dist(ZTest(:,i)',Z); 

[val indx]=min(Distances); 
forj=l:15 

[val indx]=min(Distances); 
m(j):=D(indx); 
Distances(indx)=max(Distances); 

end 
for      k=0:8 

cand(k+l)=length(find(m==k)); 
end 
[val indx]=max(cand); 
d(i)=indx-l; 

end 
OverAllAccuracy=100*length(find((DTest-d)==0))/(length(DTest)) 
fprintf ('Overall Accuracy = %f\n',length(find((DTest-d)=0))/(length(DTest))) 

fprintf('Class\tTotal\tClass0\tClassl\tClass2\tClass3\tClass4\tClass5\tClass6\tClass7\tClass8\tAccuracy\n'); 
ConfKNN(l, 
ConfKNN(2, 
ConfKNN(3, 
ConfKNN(4, 
ConfKNN(5, 
ConfKNN(6, 
ConfKNN(7, 
ConfKNN(8, 
ConfKNN(9, 

)=classmatrx(DTest,d,9,0); 
)=cl assmatrx(DTest,d,9,1) 
)=classmatrx(DTest,d,9,2) 
)=classmatrx(DTest,d,9,3) 
)=classmatrx(DTest,d,9,4) 
)=classmatrx(DTest,d,9,5) 
)=classmatrx(DTest,d,9,6) 
)=classmatrx(DTest,d,9,7) 
)=classmatrx(DTest,d,9,8) 

■    Parzen-Window based Classification 
clear all 
format long 
Priors=[0.23773677392248   0.32810475823676   0.29603305206400   0.06732957529498 0.02801022373166 
0.00227583067820   0.02167291061237   0.00497181471237 0.01386506074717]'; 
load TrainData 
D0Length=length(find(D=0)); % No Of Points in the space 
DlLength=length(find(D=l)); 
D2Length=length(find(D=2)); 
D3Length=length(find(D=3)); 
D4Length=length(find(D=4)); 
D5Length=length(fmd(D=5)); 



CVIP Lab, Univ. of Louisville, F49620-01-1-0367 "Multimodality Image Fusion for 3-D Model Building" FINAL REPORT Afy Farag (PI) 

D6Length=length(find(D=6)); 
D7Length=length(find(D=7)); 
D8Length=length(find(D=8)); 
ClassLengths=[DOLength DILength D2Length D3Length D4Length D5Length 

D6Length D7Length D8Length]; 
Z=Norma1ize(Z); 
load EvalData %Y = X from original test data for initial testing purposes 
ZTest=Normalize(ZTest); % choose side length 
Radius = 0.1; % seems to match Gaussian Kernel results well 

for i = 1 :size(ZTest,2)       %Test all the test data ; remove this loop in the single point function 

Distances=dist(ZTest(:,i)',Z); 
[Val Indxs]=find(Distances<Radius); 
Classes=D(Indxs); 
if(length(Classes)>0) 

DO=length(find(Classes=0));   % No Of Points in the Volume sphere 
D1 =length(find(Classes= 1)); 

D2=length(find(Classes==2)); 
D3=length(find(Classes==3)); 
D4=length(fmd(Classes==4)); 
D5=length(find(Classes==5)); 
D6=length(find(Classes==6)); 
D7=length(find(Classes==7)); 
D8=length(find(Classes==8)); 
Lengths=[D0       Dl D2 D3 D4 D5 D6 D7 D8]; 

Prop=Lengths./ClassLengths; 
p = Prop'/(sum(Prop)); %so you can see side-by-side with Workspace browser 

else 
p = zeros(9,1); %so you can see side-by-side with Workspace browser 

end 
Pwx=p.*Priors; 
[indx val]=fmd(Pwx==max(Pwx)); 
if(length(indx)=l) 

d(i)=indx-l; 
else 

d(i)=10; 
end 

end 

fprintf ('Overall Accuracy = %ftn',length(fmd((DTest-d)=0))/(length(DTest))) 

fprintf('Class\tTotal\tClass0\tClassl\tClass2\tClass3\tClass4\tClass5\tClass6\tClass7\tClass8\tAccuracy\n'); 
ConfBayes456( 1, :)=classmatrx(DTest,d,9,0); 
ConfBayes456(2, :)=classmatrx(DTest,d,9,1): 
Confßayes456(3,:)=classmatrx(DTest,d,9,2): 
Confßayes456(4,:)=classmarrx(DTest,d,9,3): 
Confßayes456(5,:)=classmatrx(DTest,d,9,4): 
Confßayes456(6,:)=classmatrx(DTest,d,9,5): 
Confßayes456(7,:)=classmatrx(DTest,d,9>6): 
Confßayes456(8,:)=classmatrx(DTest,d,9,7): 
Confßayes456(9,:)=classmatrx(DTest,d,9>8): 

■    Density Estimation Using SVM 
clear all 
close all 
format long 
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loaddatalDXn 
X=X'; 
Sigma=0.9; 
N=n; 
[XSorted I]=sort(X); 
Y=[]; 
Epsilon=[]; 
fori=l:N 

n=length(find(XSorted<=XSorted(i))); 
Y=[Y;n/N]; 
Epsilon=[Epsilon;sqrt((l/N)*Y(i)*(l-Y(i)))]; 

end 

Tolerance=le-5; 
n=size(XSorted, 1); 
for i=l:n 

forj=l:n 
h(i,j)=Kemel 1( XSorted(i,:),XSorted(j,:),'density',Sigrna); 
q(ij)=Kernell(XSorted(i,:),XSorted(j,:),'distribution',Sigma); 

end 
end 
H=2*h;%H=H+le-10*H; 
f=zeros(l,n); 
B=[Epsilon+Y]; 
%B=[Epsilon+Y;Epsilon-Y]; 
A=[q]; 
%A=[q;-q]; 
Aeq=[ones(l,n)]; 
beq=l; 
Lower=zeros(n, 1); 
Upper=inf*ones(n, 1); 
[Beta     b]=quadprog(H,f,A,B,Aeq>beq>Lower,Upper); 

SV=fmd( (abs(Beta)>Tolerance)); 
nSV=length(SV) 
%pause 

%Xl=[-2+XSorted(l):0.01:XSorted(length(XSorted))+2]'; 
Xl=[min(X)-3:0.1:max(X)+3]';        %For ID Gaussian 
A=sqrt(2*pi)*Sigma; 
fori=l:size(Xl,l) 

Tempy=0; 
Tempfx=0; 
forj=l:nSV 

Tempy=Tempy+Beta(SV(j))*inv(A)*Kernell(Xl(i,:),X(SV(j),:),'distribution,,Sigma); 
Tempfx=Tempfx+Beta(SV(j))*inv(A)*Kemell(Xl(i,:),X(SVO),:),'density',Sigma); 

end 
FX(i)=Tempy; 
fx(i,l)=Tempfx; 

end 
Ref=normpdf(Xl); 
h2=normcdf(Xl); 

fxModifies=abs(max(Ref)*fx/max(fx)); 
KBD01 =sum(fxModifies.*log(fxModifies./Ref)) %Kullback-Leibler distance 
KBD10=sum(Ref.*log(Ref./fxModifies)) %Kul1back-Leibler distance 
figure 
plot(Xl,Ref,'k'); 

10 
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hold on 
plot(Xl,fxModifies,'.k') 
legend(True', 'Estimated'); axis([-4  4   0   0.44]);grid on 

■    Stochastic Modeling and SVM for Multispectral Data Classification 
% This module implements the Stochastic modeling approach for Multispectral data 
% Classification. The inputs are: 
% 1- Y : Data observations in the form of m*n where mis the observation 
% dimension, n is the number of observations. 
% 2- D : The ground truth data, (matrix if it is for the whole image). 
% 3- ImageO : The Initil guess to start relaxation by ICM. 
% 4- Mu : The collected Mean vectors (m*C), C is the # of classes. 
% 5-Segma : The collected Mean vectors ((m*C)A2), C is the # of classes. 
% The associated functions are : 1) Besage       2) Normal 3)Classmatrx 4)writePPM 
clear all 
close all 
format long 
%global ImageO Beta 
load C:\Refaat\MultiSpect\Data\Agricultural\A110bservations 
load InitialSVMGuess 

NoOfClasses=max(max(D)); 
L=169; 
W=169; 
imshow(D*50,[0 255]); Title('Reference'); 
figure 
imshow(ImageO*50,[0      255]); Title('Initial Guess'); 
[Indx 1 Indx2]=find((ImageO-D)==0); 
length(Indxl)/(169*169) 

InitialImage=ImageO; 

Image=zeros(L+1, W+1); 
Image( 1,2:(L+1 ))=ImageO(L,:); 
Image(L+2,2:(L+l))=ImageO(l,:); 
Image(2:(L+l),l)=ImageO(:,W); 
Image(2:(L+ l),W+2)=ImageO(:, 1); 
Image(2:(L+l),2:(W+l))=ImageO; 
ImageO=Image; 

NoOflterations=5; 
Beta=-6; 
for N=l :NoOfIterations 

fori=2:(L+l) 
forj=2:(W+l) 

forC=l:NoOfClasses 
p(C)=P(C,(i-2)*W+(j-l))*Besage(iJj,C); 

end % C-Statementw 
[Value Indx]=max(p); 
Image(i,j)=Indx; 

end % J-Statement 
end     % I-Statement 
ImageO=Image; 

figure 
imshow(Image*50,[0        255]);Title(strcat('After     ',num2str(N))); 

[Indxl Indx2]=find((Image(2:L+l,2:W+l)-D)==0); 
length(Indxl)/(169*169) 
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N 
% pause 
end        % K-Statement 
BesageFinalImage=Image(2:(L+l),2:(W+l)); 
fprintf('Class\tTotal\tClass0\tClassl\tClass2\tClass3\tClass4\tClass5\tClass6\tClass7\tClass8\tAccuracy\n'); 
classmatrx(BesageFinalImage,D,9,l); 
classmatrx(BesageFinalImage,D,9,2); 
classmatrx(BesageFinalImage,D,9,3); 
classmatrx(BesageFinalImage,D,9,4); 
classmatrx(BesageFinalImage,D,9,5); 
classmatrx(BesageFina1Image,D,9,6); 
classmatrx(BesageFinalImage,D,9,7); 
classmatrx(BesageFina1Image,D,9,8); 
classmatrx(BesageFinalImage,D,9,9); 

ColorCode=[       255        0 0 0 0 255        255        255        128 
128 

255        0 0 255        255        0 0 255 
128        128 

255 0 255        0 255        0 255        0 128        255 
]; 

fori=0:(L-l) 
forj=l:W 

R((i*3+l):(i*3+3)j)=ColorCode(:,D(j,i+l)+l); 
end 

end 
writeppm(R,'Original 1 .ppm',L,W); 

fori=0:(L-l) 
forj=l:W 

R((i*3+l):(i*3+3),j)=ColorCode(:,BesageFinalImage(j,i+l)+l); 
end 

end 

writeppm(R,'FinalBesage 1 .ppm',L,W); 

■     SVM Density Estimation Using Mean Field Theory 
clear all 
close all 
format long 
%loaddatalD 
load Mix2Data 
n=size(X,2); 
Eta=0.001; 
% C=0.1;       %for ID Gaussian 
C=2; %for ID Mix 
Epsilon=0.0001; 
%X=X/3; 
% SigmaKernel=0.45;      %for 1D Gaussian 
SigmaKernel=1.5;      %forlDmix 
fori=l:n 

forj=l:n 
K(ij)=Kernel(X(:,i),X(:j),SigmaKernel,'distribution'); 

%     K(i j)=Kernel( X(:,i),X(: j),SigmaKernel); 
end 
Sigma(i)=K(i,i); 

end 
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M=10; 
Residual=0.05; 
Tolerance=0.0005; 
while (abs(Residual)>Tolerance) 

Wold=W; 
fori=l:M 

Y=(K*W')';        %To make y as a row 
%        Y=Y./maxT; 

Yi=Y-Sigma.*W; 
%        Yi=Yi./maxT; 

expPos=0.5*exp(0.5*C*(2*Yi-2*T+2*Epsilon+C*Sigma)); 
erfPos=l-erf( (Yi-T+Epsilon+C*Sigma)./(sqrt(2*Sigma))); 
expNeg=0.5*exp(0.5*C*(-2*Yi+2*T+2*Epsilon+C*Sigma)); 
erfNeg=l-erf( (-Yi+T+Epsilon+C*Sigma)./(sqrt(2*Sigma))); 
erfG=0.5*erf((T-Yi+Epsilon)./(sqrt(2*Sigma)))-0.5*erf((T-Yi-Epsilon)./(sqrt(2*Sigma))); 

F=C*expPos.*(erfPos)-C*expNeg.*(erfNeg); 
G=erfG+expPos.*erfPos+expNeg.*erfNeg; 
W=W+Eta*(F./G-W); 

end 
Y=(K*W')';        %To make y as a row 
Yi=Y-Sigma.*W; 
IG=0.5*erf((T-Yi+Epsilon)./(sqrt(2*Sigma)))-0.5*erf((T-Yi-Epsilon)./(sqrt(2*Sigma))); 
numDW=W.*Yi+C.*C.*Sigma.*IG; 
denDW=Sigma.*G; 
DW=C*C-W.*W-numDW/denDW; 
SIGMAi=-Sigma-l./DW; 
SIGMA=diag(SIGMAi); 
denSigma=diag(inv(SIGMA+K)); 
Sigma=abs((l ./denSigma)'-SIGMAi); 
Residual=max(abs(W-Wold))/n 

end 
Y=(K*W')';        %To make y as a row 

% Xl=[min(X)-3:0.1 :max(X)+3];        %For ID Gaussian 
Xl=[min(X)-5:0.1:max(X)+5]; 
fori=l:length(Xl) 

Tempfx=0; 
forj=l:n 

Tempfx=Tempfx+W(j)*Kerne1(Xl(:,i),X(:j),SigmaKernel,'density'); 
end 
fx(i)=Tempfx; 
Ref(i)=0.4*NormallD(-l,9,Xl(i))+0.6*NormallD(7,4,Xl(i));      %for ID mix 

%   Ref(i)=Normal 1 D(0,1 ,X 1 (i)); %for 1D Gaussian 
end 

KBD=sum((max(Ref)*fx/max(fx)).*log((max(Ref)*fx/max(fx))./Ref)) %Kullback-Leibler distance 
figure 
plot(Xl,Ref,'k'); 
hold on 
plot(X 1 ,max(Rei)*fx/max(fx),'.k') 
legend('True', 'Estimated') 


